Programme-specific Section of the Curriculum for the MSc Programme in Actuarial Mathematics at the Faculty of Science, University of Copenhagen 2010 (Rev. 2020)

Contents

1 Title, affiliation and language .. 2
 1.1 Title .. 2
 1.2 Affiliation ... 2
 1.3 Corps of external examiners ... 2
 1.4 Language ... 2

2 Academic profile ... 2
 2.1 Purpose .. 2
 2.2 General programme profile .. 2
 2.3 General structure of the programme ... 2
 2.4 Career opportunities .. 2

3 Description of competence profiles .. 3
 3.1 Competence profile ... 3

4 Admission requirements .. 3
 4.1 Applicants with a Bachelor’s degree in Actuarial Mathematics ... 3
 4.2 Applicants with a closely related Bachelor’s degree .. 4
 4.3 Applicants with a related Bachelor’s degree ... 4
 4.4 Other applicants .. 4
 4.5 Language requirements .. 4
 4.6 Supplementary subject elements .. 4

5 Prioritisation of applicants ... 5

6 Structure of the programme .. 5
 6.1 Programme components ... 5

7 Exemptions .. 6

8 Commencement etc. ... 6
 8.1 Validity ... 6
 8.2 Transfer .. 6
 8.3 Amendments .. 7

Appendix 1 Tables .. 8
Appendix 2 Interim arrangements .. 9
Appendix 3 Description of objectives for the thesis ... 13
1 Title, affiliation and language
A shared section that applies to all BSc and MSc Programmes at the Faculty of Science is linked to this programme-specific curriculum.

1.1 Title
The MSc Programme in Actuarial Mathematics leads to a Master of Science (MSc) in Actuarial Mathematics with the Danish title: Cand.act. (candidatus/candidata actuariae).

1.2 Affiliation
The programme is affiliated with the Study Board of Mathematics and Computer Science, and the students can both elect, and be elected, to this study board.

1.3 Corps of external examiners
The following corps of external examiners is used for the central parts of the MSc Programme:
- Corps of External Examiners for Mathematics (matematik).

1.4 Language
The language of this MSc Programme is English.

2 Academic profile
2.1 Purpose
The MSc programme in Actuarial Mathematics is a research-based programme, the objective of which is to provide the student with the mathematical knowledge and insights required to work independently and in a professionally sound manner within the insurance profession and contribute to the further development of this theoretical field.

2.2 General programme profile
The programme provides a general introduction to both life and non-life insurance mathematics. The student can subsequently specialise in one of these disciplines or in fields such as stochastic processes, risk management, financial theory and statistical analysis.

Actuarial mathematics, probability theory, finance, statistics and computer science are the key subject areas of the programme.

2.3 General structure of the programme
The MSc Programme is set at 120 ECTS.

There are no defined specialisations in this programme.

2.4 Career opportunities
The MSc Programme in Actuarial Mathematics qualifies students to become professionals within business functions and/or areas such as:
- A PhD programme
- Actuarial functions in insurance companies.
- Regulative authorities.
- Specialized software development.
3 Description of competence profiles
Students following the MSc Programme acquire the knowledge, skills and competences listed below. Students will also acquire other qualifications through elective subject elements and other study activities.

3.1 Competence profile
On completion of the programme, an MSc in Actuarial Mathematics has acquired the following:

Knowledge about:
- General theory for stochastic processes, including various special classes of processes: Martingales, Counting Processes, Renewal Processes, Stochastic Integrals and more.
- Stochastic differential equations with applications to finance.
- Risk measures and extreme value theory.
- Ruin theory, in particular the Cramér-Lundberg model.
- Credit modelling and operational risk modelling.
- Claim reservation.
- Term structure theory and market reserves.
- Parametric and non-parametric statistical models for insurance applications.
- Selected research-active fields with life and non-life insurance mathematics.

Skills in/to:
- Read and understand actuarial mathematical and statistical original literature.
- Communicate actuarial mathematical issues on a scientific basis.
- Account orally and in writing for inquiries into open actuarial mathematical issues.
- Derive and solve differential equations describing actuarial problems.
- Determine arbitrage free prices for financial claims.
- Compute ruin probabilities and value-at-risk.
- Analyse statistical models for insurance applications.

Competences in/to:
- Structure an inquiry into open actuarial mathematical issues, regarding both life and non-life insurance mathematics and divide it into smaller easily accessible challenges.
- Further develop and adapt probabilistic and statistical models for real-life challenges.
- Conduct independent, stringent argumentation.
- Independently take responsibility for his or her own professional development and specialisation.
- Reflect on methodologies for analysing and solving actuarial mathematical issues at a scientific level.

4 Admission requirements
With a Bachelor’s degree in Actuarial Mathematics from the University of Copenhagen, the student is granted reserved access and guaranteed a place on the MSc Programme in Actuarial Mathematics if the student applies in time to begin the MSc Programme within three years of the completion of the Bachelor's degree.

4.1 Applicants with a Bachelor’s degree in Actuarial Mathematics
Applicants with a Bachelor’s degree in Actuarial Mathematics from the University of Copenhagen may be admitted if their programme includes the following:
- Subject elements in advanced probability (at least 15 ECTS)
4.2 Applicants with a closely related Bachelor’s degree
Applicants with a Bachelor’s degree in Mathematics-Economics or Mathematics from the University of Copenhagen may also be admitted if their programme includes the following:

- Subject elements in life insurance mathematics (at least 7.5 ECTS).
- Subject elements in non-life insurance mathematics (at least 7.5 ECTS).
- Subject elements in statistics on a measure-theoretical basis (at least 15 ECTS).
- Subject elements in advanced probability (at least 15 ECTS)

4.3 Applicants with a related Bachelor’s degree
Applicants with a Bachelor’s degree in the following:

- Computer Science, Physics or Chemistry from the University of Copenhagen or other Danish or international universities.
- Mathematics or Mathematics-Economics from other Danish or international universities.

may also be admitted if their programme includes the following elements:

- Subject elements in mathematical analysis, including measure theory at least 22.5 ECTS
- Subject elements in linear algebra at least 7.5 ECTS
- Subject elements in life insurance mathematics at least 7.5 ECTS
- Subject elements in non-life insurance mathematics at least 7.5 ECTS
- Subject elements in statistics on a measure-theoretical basis at least 15 ECTS
- Subject elements in advanced probability at least 15 ECTS

4.4 Other applicants
The Faculty may also admit applicants who, after an individual academic assessment, are deemed to possess educational qualifications equivalent to those required in Subclauses 4.1-3.

4.5 Language requirements
Applicants must as a minimum document English language qualifications comparable to a Danish upper secondary school English B level or English proficiency corresponding to the tests and scores required. Accepted tests and required minimum scores are published online at www.science.ku.dk.

4.6 Supplementary subject elements
The qualifications of an applicant to the MSc program are assessed exclusively on the basis of the qualifying bachelor’s degree. Supplementary subject elements passed between the completion of the bachelor’s program and the admission to the MSc program cannot be included in the overall assessment.

However, subject elements passed before the completion of the bachelor’s program may be included in the overall assessment. This includes subject elements completed as continuing education as well as subject elements completed as part of a former higher education program. A maximum of 30 ECTS supplementary subject elements can be included in the overall assessment.

Subject elements passed before completing the BSc programme which are to form part of the MSc programme to which the student has a legal right of admission (§9-courses) cannot be included in the overall assessment.
5 Prioritisation of applicants
If the number of qualified applicants to the programme exceeds the number of places available, applicants will be prioritised as follows:

1) Applicants with a Bachelor’s degree in Actuarial Mathematics from the University of Copenhagen with reserved access to the programme.
2) Applicants with a Bachelor’s degree in Actuarial Mathematics from the University of Copenhagen.
3) Applicants with a Bachelor’s degree in Mathematics or Mathematics-Economics from the University of Copenhagen.
4) Other applicants.

If the number of qualified applicants within a category exceeds the number of places available, applicants will be prioritised according to the following criteria (listed below in prioritised order):
- Total number of ECTS within actuarial mathematics.

6 Structure of the programme
The compulsory subject elements, restricted elective subject elements and the thesis constitute the central parts of the programme (Section 21 of the Ministerial Order on Bachelor and Master’s Programmes (Candidatus) at Universities).

6.1 Programme components
The programme is set at 120 ECTS and consists of the following:
- Compulsory subject elements, 45 ECTS.
- Restricted elective subject elements, 15 ECTS
- Elective subject elements, 30 ECTS.
- Thesis, 30 ECTS.

6.1.1 Compulsory subject elements
All of the following subject elements are to be covered (45 ECTS):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAA05115U</td>
<td>Stochastic Processes in Life Insurance (LivStok)</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAA05117U</td>
<td>Stochastic Processes in Non-Life Insurance (SkadeStok)</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAA05113U</td>
<td>Continuous Time Finance (FinKont)</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK10020U</td>
<td>Quantitative Risk Management (QRM)</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAA06052U</td>
<td>Topics in Life Insurance (Liv2)</td>
<td>Block 3</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAA06068U</td>
<td>Topics in Non-Life Insurance (Skade2)</td>
<td>Block 4</td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>

6.1.2 Restricted elective subject elements
15 ECTS are to be covered by subject elements from the following list:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAK18000U</td>
<td>An Introduction to Large Deviations*</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK17007U</td>
<td>Monte Carlo Methods in Insurance and Finance</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK16015U</td>
<td>Optimal Stopping with Applications*</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK16004U</td>
<td>Computational Finance</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK13005U</td>
<td>Introduction to Extreme Value Theory (IntroExtremValue)*</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK20000U</td>
<td>Polynomical Utility Optimization</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK19005U</td>
<td>Advances in Life Insurance Mathematics*</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK19003U</td>
<td>Applied Probability</td>
<td>Block 3</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK17005U</td>
<td>Machine Learning Methods in Non-life Insurance*</td>
<td>Block 3</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NMAK16006U</td>
<td>Consumption-Investment-Insurance Problems*</td>
<td>Block 3</td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>
6.1.3 Elective subject elements
30 ECTS are to be covered as elective subject elements.
All subject elements at MSc level may be included as elective subject elements in the MSc Programme.

BSc subject elements corresponding to 15 ECTS may be included in the MSc Programme.

Projects outside the course scope may be included in the elective section of the programme with up to 15 ECTS. The regulations are described in Appendix 5 to the shared section of the curriculum.

Projects in practice may be included in the elective section of the programme with up to 15 ECTS. The regulations are described in Appendix 4 to the shared section of the curriculum.

Thesis preparation projects may not be included in the elective section of the programme. The regulations are described in Appendix 6 to the shared section of the curriculum.

6.1.4 Thesis
The MSc Programme in Actuarial Mathematics includes a thesis corresponding to 30 ECTS, as described in Appendix 2 to the shared curriculum. The thesis must be written within the academic scope of the programme.

6.1.5 Academic Mobility
For students admitted in September the academic mobility for the MSc Programme in Actuarial Mathematics is placed in block 1+2 of the 2nd year.

For students admitted in February the academic mobility for the MSc Programme in Actuarial Mathematics is placed in block 3+4 of the 1st year.

Academic mobility requires that the student follows the rules and regulations regarding pre-approval and credit transfer.

In addition the student has the possibility to arrange similar academic mobility in other parts of the programme.

7 Exemptions
In exceptional circumstances, the study board may grant exemptions from the rules in the curriculum specified solely by the Faculty of Science.

8 Commencement etc.
8.1 Validity
This subject specific section of the curriculum applies to all students enrolled in the programme – see however Appendix 2.

8.2 Transfer
Students enrolled on previous curricula may be transferred to the new one as per the applicable transfer regulations or according to an individual credit transfer by the study board.

8.3 Amendments
The curriculum may be amended once a year so that any changes come into effect at the beginning of the academic year. Amendments must be proposed by the study board and approved by the Dean.

Notification about amendments that tighten the admission requirements for the programme will be published online at www.science.ku.dk one year before they come into effect.

If amendments are made to this curriculum, an interim arrangement may be added if necessary to allow students to complete their MSc Programme according to the amended curriculum.
Appendix 1 Tables

Tables for students admitted to the programme in September (summer):

Table – MSc Programme in Actuarial Mathematics

<table>
<thead>
<tr>
<th></th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Processes in Non-life Insurance</td>
<td>Quantitative Risk Management</td>
<td>Elective</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Stochastic Processes in Life Insurance</td>
<td>Continuous Time Finance</td>
<td>Topics in Life Insurance</td>
<td>Topics in Non-life Insurance</td>
<td></td>
</tr>
<tr>
<td>2nd year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Elective</td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Compulsory | Restricted elective | Elective | The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules. |

Table for students admitted to the programme in February (winter):

Table – MSc Programme in Actuarial Mathematics*

<table>
<thead>
<tr>
<th></th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
<td>Stochastic Processes in Non-Life Insurance</td>
<td>Quantitative Risk Management</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Topics in Non-Life Insurance</td>
<td>Stochastic Processes in Life Insurance</td>
<td>Continuous Time Finance</td>
<td></td>
</tr>
<tr>
<td>2nd year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topics in Life Insurance</td>
<td>Elective</td>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Compulsory | Restricted elective | Elective | The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules. |

*This table is only relevant for students who begin the MSc Programme in February (block 3).
Appendix 2 Interim arrangements

The Shared Section of the BSc and MSc Curricula for Study Programmes applies to all students.

The interim arrangements below only consist of parts where the current curriculum differs from the rules and regulations that were previously valid. Therefore, if information about relevant rules and regulations are missing, it can be found in the curriculum above.

1 General changes for students admitted in the academic year 2018/19

Students admitted to the MSc Programme in the academic year 2018/19 must finish the programme as listed in the curriculum above with the following exceptions.

Restricted elective subject elements

15 ECTS are to be covered by courses from the following list:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAK18003U</td>
<td>Beyond the Classical Markov Chain Life Insurance Setting</td>
<td>Discontinued*</td>
</tr>
<tr>
<td>NMAK18010U</td>
<td>Topics in Stochastic Calculus</td>
<td>Discontinued*</td>
</tr>
<tr>
<td>NMAK18007U</td>
<td>Pension Systems</td>
<td>Discontinued*</td>
</tr>
</tbody>
</table>

* See course specific changes below

2 General changes for students admitted in the academic year 2017/18

Students admitted to the MSc Programme in the academic year 2017/18 must finish the programme as listed in the curriculum above with the following exceptions.

2.1 When Stochastic Processes 2 or Stochastic Processes 3 (or both) is passed as part of the BSc Programme

From the academic year 2015/16, the courses Stochastic Processes 2 and Stochastic Processes 3 were added as compulsory subject elements to the BSc Programme in Actuarial Mathematics (forsikringsmatematik). Stochastic Processes 2 and Stochastic Processes 3 are equivalent to the two compulsory subject elements Advanced Probability Theory 1 and Advanced Probability Theory 2 in the MSc Programme in Actuarial Mathematics.

From the academic year 2018/19, Advanced Probability Theory 1 (NMAK11003U) and Advanced Probability Theory 2 (NMAK11011U) are no longer official parts of the MSc Programme in Actuarial Mathematics. Those students, who have passed Stochastic Processes 2 and Stochastic Processes during their BSc Programme, are now required to pass 15 ECTS restricted elective subject elements instead.

Structure of the programme

Determined by whether students have passed one or both BSc courses, the structure of the programme will vary accordingly:

- If Stochastic Processes 2 is passed, students are required to complete Advanced Probability Theory 2 and 7.5 ECTS restricted elective subject elements

The programme will consist of:

- Compulsory 52.5 ECTS
- Restricted Elective 7.5 ECTS
- Elective subject elements, 30 ECTS.
- Thesis, 30 ECTS
• If Stochastic Processes 3 is passed, students are required to complete Advanced Probability Theory 1 and 7.5 ECTS restricted elective subject elements

The programme will consist of:
• Compulsory 52.5 ECTS
• Restricted Elective 7.5 ECTS
• Elective subject elements, 30 ECTS.
• Thesis, 30 ECTS

• If neither of the BSc courses are completed, students are required to complete both Advanced Probability Theory 1 and Advanced Probability Theory 2 as compulsory subject elements

The programme will consist of:
• Compulsory 60 ECTS
• Elective subject elements, 30 ECTS.
• Thesis, 30 ECTS

Table – MSc Programme in Actuarial Mathematics (if both are passed)

<table>
<thead>
<tr>
<th>Year</th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Stochastic Processes in Life Insurance</td>
<td>Continuous Time Finance</td>
<td>Topics in Life Insurance</td>
<td>Topics in Non-Life Insurance</td>
</tr>
<tr>
<td>2nd year</td>
<td>Stochastic Processes in Non-Life Insurance</td>
<td>Quantitative Risk Management</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.

Table – MSc Programme in Actuarial Mathematics (Stochastic Processes 2 is passed)

<table>
<thead>
<tr>
<th>Year</th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Restricted elective</td>
<td>Advanced Probability Theory 2</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Stochastic Processes in Life Insurance</td>
<td>Continuous Time Finance</td>
<td>Topics in Life Insurance</td>
<td>Topics in Non-Life Insurance</td>
</tr>
<tr>
<td>2nd year</td>
<td>Stochastic Processes in Non-Life Insurance</td>
<td>Quantitative Risk Management</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.
Table – MSc Programme in Actuarial Mathematics (Stochastic Processes 3 is passed)

<table>
<thead>
<tr>
<th></th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Advanced Probability Theory 1</td>
<td>Restricted elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Stochastic Processes in Life Insurance</td>
<td>Continuous Time Finance</td>
<td>Topics in Life Insurance</td>
<td>Topics in Non-Life Insurance</td>
</tr>
<tr>
<td>2nd year</td>
<td>Stochastic Processes in Non-Life Insurance</td>
<td>Quantitative Risk Management</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.

Table – MSc Programme in Actuarial Mathematics (if none are passed)

<table>
<thead>
<tr>
<th></th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Advanced Probability Theory 1</td>
<td>Advanced Probability Theory 2</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Stochastic Processes in Life Insurance</td>
<td>Continuous Time Finance</td>
<td>Topics in Life Insurance</td>
<td>Topics in Non-Life Insurance</td>
</tr>
<tr>
<td>2nd year</td>
<td>Stochastic Processes in Non-Life Insurance</td>
<td>Quantitative Risk Management</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.

Restricted elective subject elements

15 ECTS are to be covered as restricted elective subject elements from the following list if both Stochastic Processes 2 and Stochastic Processes 3 are passed as part of the BSc programme.

7.5 ECTS are to be covered as restricted elective subject elements from the following list if either Stochastic Processes 2 or Stochastic Processes 3 is passed as part of the BSc programme.

- Restricted elective subject elements offered as part of this curriculum (see above)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAK16004U</td>
<td>Computational Finance (AAM)</td>
<td>Block 1</td>
<td>7.5</td>
</tr>
<tr>
<td>NMAK17007U</td>
<td>Monte Carlo Methods in Insurance and Finance*</td>
<td>Block 1</td>
<td>7.5</td>
</tr>
<tr>
<td>NMAK18003U</td>
<td>Beyond the Classical Markov Chain Life Insurance Setting</td>
<td>Discontinued*</td>
<td>7.5</td>
</tr>
<tr>
<td>NMAK18010U</td>
<td>Topics in Stochastic Calculus</td>
<td>Discontinued*</td>
<td>7.5</td>
</tr>
<tr>
<td>NMAK18007U</td>
<td>Pension Systems</td>
<td>Discontinued*</td>
<td>7.5</td>
</tr>
<tr>
<td>NMAK17003U</td>
<td>Inference, Market Consistent Valuation and Pricing in Life Insurance</td>
<td>Discontinued*</td>
<td>7.5</td>
</tr>
</tbody>
</table>

* See course specific changes below
4 Course specific changes

<table>
<thead>
<tr>
<th>Discontinued course</th>
<th>Interim arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pension Systems (NMAK18007U), 7,5 ECTS</td>
<td>The course was a restricted elective subject element in the academic year 2018/19 and earlier.</td>
</tr>
<tr>
<td></td>
<td>The course was offered for the last time in the academic year 2018/19 and a third exam was offered in the academic year 2019/20.</td>
</tr>
<tr>
<td>Topics in Stochastic Calculus (NMAK18010U), 7,5 ECTS</td>
<td>The course was a restricted elective subject element in the academic year 2018/19 and earlier.</td>
</tr>
<tr>
<td></td>
<td>The course was offered for the last time in the academic year 2018/19 and a third exam was offered in the academic year 2019/20.</td>
</tr>
<tr>
<td>Beyond the Classical Markov Chain Life Insurance Setting (NMAK18000U), 7,5 ECTS</td>
<td>The course was a restricted elective subject element in the academic year 2018/19 and earlier.</td>
</tr>
<tr>
<td></td>
<td>The course was offered for the last time in the academic year 2018/19 and a third exam was offered in the academic year 2019/20.</td>
</tr>
<tr>
<td>Inference, Market Consistent Valuation and Pricing in Life Insurance (NMAK17003U)</td>
<td>The course was a restricted elective subject element in the academic year 2017/18 and earlier.</td>
</tr>
<tr>
<td></td>
<td>The course was offered for the last time in the academic year 2018/19 and a third exam was offered in the academic year 2019/20.</td>
</tr>
</tbody>
</table>
Appendix 3 Description of objectives for the thesis

After completing the thesis, the student should have:

Knowledge about:
- Scientific problems within the study programme’s subject areas.
- A suitable combination of methodologies/theories based on international research for use in his/her work with the problem formulation.
- Theories/models on the basis of an organised value system and with a high degree of independence.

Skills in/to:
- Apply and critically evaluate theories/methodologies, including their applicability and limitations.
- Assess the extent to which the production and interpretation of findings/material depend on the theory/methodology chosen and the delimitation chosen.
- Discuss academic issues arising from the thesis.
- Draw conclusions in a clear and academic manner in relation to the problem formulation and, more generally, considering the topic and the subject area.
- Discuss and communicate the academic and social significance, if any, of the thesis based on ethical principles.

Competences in/to:
- Initiate and perform academic work in a research context.
- Solve complex problems and carry out development assignments in a work context.