## Contents

1 Title, affiliation and language ................................................................. 2  
  1.1 Title ........................................................................................................ 2  
  1.2 Affiliation .......................................................... 2  
  1.3 Corps of external examiners ................................................................. 2  
  1.4 Language .......................................................... 2  

2 Academic profile ............................................................................... 2  
  2.1 Purpose ................................................................................................ 2  
  2.2 General programme profile .............................................................. 3  
  2.3 General structure of the programme .............................................. 3  
  2.4 Career opportunities .............................................................. 3  

3 Description of competence profiles ...................................................... 3  
  3.1 Generic competence profile .............................................................. 3  
  3.2 Molecular Biology and Genetics ................................................... 4  
  3.3 Cell Biology and Physiology .............................................................. 4  
  3.4 Microbiology .......................................................... 5  
  3.5 Ecology .......................................................... 6  
  3.6 Marine Biology .......................................................... 6  

4 Admission requirements ................................................................... 7  
  4.1 Applicants with a Bachelor’s degree in Biology from the University of Copenhagen .............................................. 7  
  4.2 Applicants with a Bachelor’s degree in Biology ........................................ 7  
  4.3 Applicants with a related Bachelor’s degree ................................................ 7  
  4.4 Other applicants ........................................................................... 7  
  4.5 Language requirements .............................................................. 7  
  4.6 Supplementary subject elements ................................................ 7  

5 Prioritisation of applicants ................................................................ 8  

6 Structure of the programme ............................................................. 9  
  6.1 Molecular Biology and Genetics ................................................... 9  
  6.2 Cell Biology and Physiology ........................................................... 10  
  6.3 Microbiology .......................................................... 11  
  6.4 Ecology .......................................................... 13  
  6.5 Marine Biology .......................................................... 14  

7 Exemptions ....................................................................................... 16  

8 Commencement etc. .......................................................................... 16  
  8.1 Validity ......................................................................................... 16  
  8.2 Transfer ......................................................................................... 16  
  8.3 Amendments ............................................................................... 16  

Appendix 1 Tables .............................................................................. 17  
Appendix 2 Interim arrangements .......................................................... 21  
Appendix 3 Description of objectives for the thesis ................................ 37
1 Title, affiliation and language
A shared section that applies to all BSc and MSc Programmes at the Faculty of Science is linked to this programme-specific curriculum.

1.1 Title
The MSc Programme in Biology with a specialisation in Molecular Biology and Genetics leads to a Master of Science (MSc) in Biology with a specialisation in Molecular Biology and Genetics with the Danish title: *Cand.scient. (candidatus/candidata scientiarum) i biologi med en specialisering i molekylæribiologi og genetik.*

The MSc Programme in Biology with a specialisation in Cell Biology and Physiology leads to a Master of Science (MSc) in Biology with a specialisation in Cell Biology and Physiology with the Danish title: *Cand.scient. (candidatus/candidata scientiarum) i biologi med en specialisering i cellebiologi og fysiologi.*

The MSc Programme in Biology with a specialisation in Microbiology leads to a Master of Science (MSc) in Biology with a specialisation in Microbiology with the Danish title: *Cand.scient. (candidatus/candidata scientiarum) i biologi med en specialisering i mikrobiologi.*

The MSc Programme in Biology with a specialisation in Ecology leads to a Master of Science (MSc) in Biology with a specialisation in Ecology with the Danish title: *Cand.scient. (candidatus/candidata scientiarum) i biologi med en specialisering i økologi.*

The MSc Programme in Biology with a specialisation in Marine Biology leads to a Master of Science (MSc) in Biology with a specialisation in Marine Biology with the Danish title: *Cand.scient. (candidatus/candidata scientiarum) i biologi med en specialisering i marinbiologi.*

1.2 Affiliation
The programme is affiliated with the Study Board for the Biological Area, and the students can both elect, and be elected, to this study board.

1.3 Corps of external examiners
The following corps of external examiners is used for the central parts of the MSc Programme:
- Corps of External Examiners for Biology (*biologi*).

1.4 Language
The language of this MSc Programme is English.

2 Academic profile
2.1 Purpose
The objective of the programme is to provide the graduates with an in-depth knowledge within the methods and scientific basis of biological research. The education is based on the competences the students have acquired during the BSc study programme. On completion of the programme, students will be able to perform research at advanced levels and analyse and solve questions and problems within broad fields of biology.
2.2 General programme profile
The student can choose between 5 different specialisations, acquiring expertise within a cluster of related subjects. Within each specialisation the student can choose between different subject elements covering a range of topics. In addition, the student is allowed to follow supplementary courses within other disciplines.

Biology is the key subject area of the programme.

2.3 General structure of the programme
The MSc Programme is set at 120 ECTS.

The MSc Programme in Biology consists of the following elements:
- Specialisation, 120 ECTS incl. thesis.

The student can choose one of the following specialisations:
- Molecular Biology and Genetics.
- Cell Biology and Physiology.
- Microbiology.
- Ecology.
- Marine Biology.

2.4 Career opportunities
The MSc Programme in Biology qualifies students to become professionals within business functions and/or areas such as:
- A PhD programme
- Research.
- Teaching.
- Biotech-, pharmaceutical and related industries.
- Public administration.
- Private consultancies.
- Non-governmental organisations.
- Publishing industry.

3 Description of competence profiles
Students following the MSc Programme acquire the knowledge, skills and competences listed below. Students will also acquire other qualifications through elective subject elements and other study activities.

3.1 Generic competence profile
On completion of the programme a MSc in Biology has acquired the following regardless of the chosen specialisation:

Knowledge about:
- State-of-the-art within a particular specialisation in biology.
- Current biological problems relevant to industry and society and their possible solutions.

Skills in/to:
- Apply the most recent and most advanced experimental techniques, measuring methods and equipment in the field and/or in the laboratory.
- Analyse, interpret and critically evaluate experimental complex stratified biological data from a range of methods.
- Summarise a research subject based on original scientific literature.
Competences in/to:
- Manage, advice on and conduct research into biological systems, based on in-depth biological knowledge of the systems.
- Hypothesise, independently formulate and conduct experiments, in the field and/or in the laboratory, and explain, communicate and put into perspective a scientific problem, both orally and in writing.
- Combine and further develop advanced methods and techniques, including the competences required to evaluate the complexity of the data collected, sources of error and methodological uncertainties.
- Disseminate knowledge about the subject area in both academic and non-academic contexts.

3.2 Molecular Biology and Genetics
On completion of the programme a MSc in Biology with a specialisation in Molecular Biology and Genetics has acquired the following in addition to the generic competence profile:

Knowledge about:
- Genomic structure, organisation and function.
- Genomic structural elements, including centromeres, telomeres, transposons and gene regulatory sequences.
- The structure and regulation of chromatin in post-translational modifications.
- Genomics, transcriptomics, proteomics and other ‘omics’ technologies.
- Causes, diagnosis and inheritance of human genetic diseases.
- Genetic strategies for therapeutic intervention in human genetic diseases.
- Rules and regulations governing work with genetically modified organisms.

Skills in/to:
- Set up, perform and evaluate genetic and genomic screens.
- Design and construct genetically modified cells for biotechnological and biopharmaceutical purposes.
- Apply bioinformatical methods and databases to analyse DNA, RNA and protein sequences.
- Evaluate the applicability of molecular and genetic methods for specific model systems.

Competences in/to:
- Summarise the genetic and epigenetic basis for cellular functions.
- Identify differences and similarities between different cell types.
- Link genetic and epigenetic processes and regulation mechanisms.
- Integrate genetic, epigenetic and molecular mechanisms with an overall understanding of cellular functions.
- Apply molecular and genetic knowledge to understand human diseases.

3.3 Cell Biology and Physiology
On completion of the programme a MSc in Biology with a specialisation in Cell Biology and Physiology has acquired the following in addition to the generic competence profile:

Knowledge about:
- The structure, organisation and function of cells.
- The physiology of organs and whole organisms.
- Subcellular structures, including organelles, membrane systems and the cytoskeletons.
• Signal transduction systems (intra and intercellular) used to regulate cell development, growth, differentiation, motility and death as well as to regulate cell and tissue homeostasis during various physiological functions.

Skills in/to:
• Choose and conduct experimental studies on cellular kinetics and physiology.
• Apply relevant methods specific to physiological evaluation.
• Evaluate the applicability of cellular and physiological methods for specific model systems.

Competences in/to:
• Summarise the function of eukaryotic cells and cellular homeostasis.
• Compare the strategies by which eukaryotic cells interact and communicate with the extracellular environment to regulate development, gene expression, differentiation and physiological activity.
• Link cellular processes and regulatory mechanisms, including the competences required to integrate the interactions between cells in the same organ and cells in different organs.
• Integrate cellular and molecular mechanisms in cell-cell interaction and signal transduction with an overall understanding of the function and development of tissues and organs.
• Relate the overall construction of the cell and the organ to understanding of multi-cellular animals, including humans.
• Summarise the organism’s primary physiological systems, their normal function and response during homeostatic disturbances and in response to selected diseases.
• Integrate knowledge into the description and analysis of important physiological and pathophysiological contexts in human beings.

3.4 Microbiology
On completion of the programme a MSc in Biology with a specialisation in Microbiology has acquired the following in addition to the generic competence profile:

Knowledge about:
• Prokaryotes’ physiology, molecular biology, activity, occurrence, interactions, symbiosis with animals and pathogenicity in humans.

Skills in/to:
• Cultivate and isolate microorganisms.
• Use selected state-of-the-art molecular techniques to study the molecular biology, activity, physiology, interactions and occurrences of microorganisms.
• Demonstrate Good Laboratory Practice.

Competences in/to:
• Evaluate the structural and functional adaptations that enable prokaryotes to live as single-celled organisms or in close interaction with eukaryotes.
• Develop and critically evaluate selected molecular methods for the study of microorganisms.
• Put into perspective the importance of the molecular biology of microorganisms in a societal context, e.g. in relation to bacterial resistance to antibiotics and microorganisms as a source of new industrial enzymes and other bioactive substances.
• Evaluate and put into perspective the importance of the interactions of microorganisms with their surroundings and other organisms, including humans.
• Describe the physiological and molecular aspects of the pathogenicity of bacteria in humans.
• Integrate molecular mechanisms behind microbial evolution.
3.5 Ecology
On completion of the programme a MSc in Biology with a specialisation in Ecology has acquired the following in addition to the generic competence profile:

Knowledge about:
- Fundamental ecological and evolutionary processes.
- Drivers of spatial and temporal distribution of species.
- Whole-organism biology of bacteria, fungi, protists and multicellular organisms of importance to ecosystem function and organisms typical of specific environments.
- The function of ecosystems and their interaction with local, regional and global systems, including global change.
- Applied and societal aspects of ecology and evolution.

Skills in/to:
- Collect, identify, and isolate selected groups of organisms.
- Use genetic methods in species identification and typing.

Competences in/to:
- Understand and present the structure and function of complex ecosystems.
- Analyse the occurrence and activity of organisms in relation to the physical/chemical environment.
- Use organisms and genetic resources in an industrial context.
- Advise on environmental management issues.
- Illustrate and analyse biological phenomena by distinguishing between immediate (how?) and evolutionary (why?) causes and explanations.
- Explain and discuss the distribution and density of species at both local and global scales.
- Evaluate the occurrence of species in the wild on both an ecological and an evolutionary timescale.
- Explain and discuss the evolutionary adaptations of organisms to a given environment and their behaviour in relation/response to individuals of the same and other species.
- Evaluate interactions between individuals at different trophic levels, e.g. plants/herbivores, prey/predators, and host organisms/parasites/diseases.
- Apply knowledge of biology in the management of stocks, biodiversity and animal welfare.

3.6 Marine Biology
On completion of the programme a MSc in Biology with a specialisation in Marine Biology has acquired the following in addition to the generic competence profile:

Knowledge about:
- The complexity of marine ecosystems, biodiversity as well as the conversion of energy and matter in the ocean.
- Marine habitat types, their distribution, structure and origin.
- Marine microorganisms and animal groups, their relationship, morphology, physiology as well as feed intake and life history strategies.

Skills in/to:
- Collect, identify and categorise marine organisms into overall groups.
- Use genetic methods in species identification and typing.

Competences in/to:
- Describe the structure and function of marine ecosystems on a micro, macro and mega scale.
• Explain the fluxes of energy and organic and inorganic matter in marine systems.
• Explain how marine organisms adapt to the physical, chemical and biological characteristics of different ecosystems as well as how they respond to changes in them.
• Analyse and interpret highly complex marine data using modern methods of quantitative analysis.

4 Admission requirements
With a Bachelor’s degree in Biology from the University of Copenhagen the student is granted reserved access and guaranteed a place on the MSc Programme in Biology if the student applies before the application deadline during the first application period after the completion of the Bachelor’s degree.

4.1 Applicants with a Bachelor’s degree in Biology from the University of Copenhagen
Applicants with a Bachelor’s degree in Biology from the University of Copenhagen are directly academically qualified for admission to the MSc programme in Biology.

4.2 Applicants with a Bachelor’s degree in Biology
Applicants with a Bachelor’s degree in Biology from other Danish, Nordic or international universities may also be admitted if their programme includes the following:
  • A minimum of 5 ECTS within each of the following areas: organismal biology, ecology, evolution biology, cell biology, physiology, molecular biology and microbiology, statistics, chemistry and biochemistry.
  • Practical skills within laboratory and field work within the main areas of biology corresponding to a total of 30 ECTS.

4.3 Applicants with a related Bachelor’s degree
Applicants with a Bachelor’s degree within the areas of plant science, animal science, environmental biology, biochemistry, biology-biotechnology, molecular biomedicine or related subjects from the University of Copenhagen or other Danish, Nordic or international universities may also be admitted if their programme includes the following:
  • A minimum of 5 ECTS within each of the following areas: organismal biology, ecology, evolution biology, cell biology, physiology, molecular biology and microbiology, statistics, chemistry and biochemistry.
  • Practical skills within laboratory and field work within the main areas of biology corresponding to a total of 30 ECTS.

4.4 Other applicants
The Faculty may also admit applicants who, after an individual academic assessment, are deemed to possess educational qualifications equivalent to those required in Subclauses 4.1-3.

4.5 Language requirements
Applicants must as a minimum document English language qualifications comparable to a Danish upper secondary school English B level or English proficiency corresponding to the tests and scores required. Accepted tests and required minimum scores are published online at www.science.ku.dk.

4.6 Supplementary subject elements
The qualifications of an applicant to the MSc program are assessed exclusively on the basis of the qualifying bachelor’s degree. Supplementary subject elements passed between the completion of the bachelor’s program and the admission to the MSc program cannot be included in the overall assessment.
However, subject elements passed before the completion of the bachelor’s program may be included in the overall assessment. This includes subject elements completed as continuing education as well as subject elements completed as part of a former higher education program. A maximum of 30 ECTS supplementary subject elements can be included in the overall assessment.

Subject elements passed before completing the BSc programme which are to form part of the MSc programme to which the student has a legal right of admission (§9-courses) cannot be included in the overall assessment.

5 Prioritisation of applicants
If the number of qualified applicants to the programme exceeds the number of places available, applicants will be prioritised as follows:

1) Applicants with a Bachelor’s degree in Biology from the University of Copenhagen seeking admission by way of direct extension of their completed BSc programme.
2) Applicants with a Bachelor’s degree in Biology from the University of Copenhagen.
3) Other applicants with a Bachelor’s degree in Biology.
4) Applicants with a Bachelor’s degree in Biochemistry or Molecular Biomedicine from the University of Copenhagen.
5) Other applicants.

If the number of qualified applicants within a category exceeds the number of places available, applicants will be prioritised according to the following criteria:

- Highest number of ECTS achieved within the following areas (not listed in prioritised order):
  - Organismal biology
  - Ecology
  - Evolutionary biology
  - Cell biology
  - Physiology
  - Molecular biology
  - Microbiology
  - Statistics, chemistry and biochemistry
  - Practical skills within laboratory and field work within the main areas of biology
6 Structure of the programme

The compulsory subject elements, restricted subject elements and the thesis constitute the central parts of the programme (Section 21 of the Ministerial Order on Bachelor and Master’s Programmes (Candidatus) at Universities).

Before the beginning of the MSc Programme the student will choose a specialisation.

6.1 Molecular Biology and Genetics

The specialisation is set at 120 ECTS and consists of the following:

- Compulsory subject elements, 15 ECTS.
- Restricted elective subject elements, 30 ECTS.
- Elective subject elements, 15 ECTS.
- Thesis, 60 ECTS.

6.1.1 Compulsory subject elements

All of the following subject elements are to be covered (15 ECTS):

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK15017U</td>
<td>Theoretical Molecular Genetics</td>
<td>Block 1</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK13005U</td>
<td>Experimental Higher Model Organisms</td>
<td>Block 2</td>
<td>7.5</td>
</tr>
</tbody>
</table>

6.1.2 Restricted elective subject elements

30 ECTS are to be covered as subject elements from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK15011U</td>
<td>Experimental Molecular Genetics</td>
<td>Block 1</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK10015U</td>
<td>Cell Cycle Control and Cancer</td>
<td>Block 1</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK10017U</td>
<td>RNA Biology</td>
<td>Block 1</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK15010U</td>
<td>Epigenetics and Cell Differentiation</td>
<td>Block 2</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK15013U</td>
<td>Genome Sequence Analysis</td>
<td>Block 2</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK17001U</td>
<td>Dynamical Models in Molecular Biology</td>
<td>Block 2</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14034U</td>
<td>Molecular Neurobiology</td>
<td>Block 2</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK15014U</td>
<td>Human Genetics</td>
<td>Block 3</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIA09043U</td>
<td>Population Genetics</td>
<td>Block 3</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14035U</td>
<td>Medical Bacteriology</td>
<td>Block 3</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK11009U</td>
<td>Experimental Cell Biology</td>
<td>Block 4</td>
<td>15</td>
</tr>
<tr>
<td>NBIA07023U</td>
<td>Bioinformatics of High Throughput Analyses</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK13017U</td>
<td>Molecular Biotechnology</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14020U</td>
<td>Archaea Biology</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>NFKK14001U</td>
<td>Project outside the course scope</td>
<td>Block 1-5</td>
<td>7.5</td>
</tr>
<tr>
<td>NFKK14006U</td>
<td>Project in Practice</td>
<td>Block 1-5</td>
<td>15</td>
</tr>
</tbody>
</table>

6.1.3 Elective subject elements

15 ECTS are to be covered as elective subject elements.
All subject elements at MSc level may be included as elective subject elements in the MSc Programme.

BSc subject elements corresponding to 15 ECTS may be included in the MSc Programme.

Projects outside the course scope may be included in the elective section of the programme with up to 15 ECTS. Projects outside course scope may not exceed 15 ECTS in total of the programme. Projects outside course scope may be written as a combination of the restricted elective and elective section of the programme The regulations are described in Appendix 5 to the shared section of the curriculum.
Projects in practice may be included in the elective section of the programme with up to 15 ECTS. Projects in practice may not exceed 15 ECTS in total of the programme. Project in practice may be written as a combination of the restricted elective and elective section of the programme. The regulations are described in Appendix 4 to the shared section of the curriculum.

6.1.4 Thesis
The MSc Programme in Biology with a specialisation in Molecular Biology and Genetics includes a thesis corresponding to 60 ECTS, as described in Appendix 2 to the shared curriculum. The thesis must be written within the academic scope of the programme.

6.1.5 Academic mobility
The curriculum makes it possible to follow subject elements outside the Faculty of Science.

For students admitted in September the academic mobility for the MSc Programme in Biology with a specialisation in Molecular Biology and Genetics is placed in block 3+4 of the 1st year (thesis full time).

For students admitted in February the academic mobility for the MSc Programme in Biology with a specialisation in Molecular Biology and Genetics is placed in block 3+4 of the 1st year (thesis full time).

Academic mobility requires that the student follows the rules and regulations regarding pre-approval and credit transfer.

In addition the student has the possibility to arrange similar academic mobility in other parts of the programme.

6.2 Cell Biology and Physiology
The specialisation is set at 120 ECTS and consists of the following:

- Compulsory subject elements, 22.5 ECTS.
- Restricted elective subject elements, 22.5 ECTS.
- Elective subject elements, 15 ECTS.
- Thesis, 60 ECTS.

6.2.1 Compulsory subject elements
The following subject elements are to be covered (22.5 ECTS):

<table>
<thead>
<tr>
<th>Subject ID</th>
<th>Subject Name</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK15006U</td>
<td>Advanced Cell Biology</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14014U</td>
<td>Cellular and Integrative Physiology</td>
<td>Block 3</td>
<td>15 ECTS</td>
</tr>
</tbody>
</table>

6.2.2 Restricted elective subject elements
22.5 ECTS are to be covered as subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject ID</th>
<th>Subject Name</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK10015U</td>
<td>Cell Cycle Control and Cancer</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK15016U</td>
<td>The Human Microbiome</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK15009U</td>
<td>Cellular Signaling in Health and Disease</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14034U</td>
<td>Molecular Neurobiology</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK10020U</td>
<td>Developmental Biology</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK11009U</td>
<td>Experimental Cell Biology</td>
<td>Block 4</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIK13017U</td>
<td>Molecular Biotechnology</td>
<td>Block 4</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK16000U</td>
<td>The Human Microbiome - Experiments</td>
<td>Block 4</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NFKK14001U</td>
<td>Project outside the course scope</td>
<td>Block 1-5</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NFKK14006U</td>
<td>Project in practice</td>
<td>Block 1-5</td>
<td>15 ECTS</td>
</tr>
</tbody>
</table>
6.2.3 Elective subject elements
15 ECTS are to be covered as elective subject elements. All subject elements at MSc level may be included as elective subject elements in the MSc Programme.

BSc subject elements corresponding to 15 ECTS may be included in the MSc Programme.

Projects outside the course scope may be included in the elective section of the programme with up to 15 ECTS. Projects outside course scope may not exceed 15 ECTS in total of the programme. Projects outside course scope may be written as a combination of the restricted elective and elective section of the programme. The regulations are described in Appendix 5 to the shared section of the curriculum.

Projects in practice may be included in the elective section of the programme with up to 15 ECTS. Projects in practice may not exceed 15 ECTS in total of the programme. Project in practice may be written as a combination of the restricted elective and elective section of the programme. The regulations are described in Appendix 4 to the shared section of the curriculum.

6.2.4 Thesis
The MSc Programme in Biology with a specialisation in Cell Biology and Physiology includes a thesis corresponding to 60 ECTS, as described in Appendix 2 to the shared curriculum. The thesis must be written within the academic scope of the programme.

6.2.5 Academic mobility
The curriculum makes it possible to follow subject elements outside the Faculty of Science.

For students admitted in September the academic mobility for the MSc Programme in Biology with a specialisation in Cell Biology and Physiology is placed in block 3+4 of the 1st year.

For students admitted in February the academic mobility for the MSc Programme in Biology with a specialisation in Cell Biology and Physiology is placed in block 3+4 of the 1st year.

Academic mobility requires that the student follows the rules and regulations regarding pre-approval and credit transfer.

In addition the student has the possibility to arrange similar academic mobility in other parts of the programme.

6.3 Microbiology
The specialisation is set at 120 ECTS and consists of the following:
- Compulsory subject elements, 15 ECTS.
- Restricted elective subject elements, 30 ECTS.
- Elective subject elements, 15 ECTS.
- Thesis, 60 ECTS.

6.3.1 Compulsory subject elements
All of the following subject elements are to be covered (15 ECTS):

<table>
<thead>
<tr>
<th>Subject</th>
<th>Course Title</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK15003U</td>
<td>Advanced Bacteriology 1</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK15005U</td>
<td>Advanced Bacteriology 2</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>
6.3.2 Restricted elective subject elements

30 ECTS are to be covered as subject elements from the following list:

- NBIK15016U  The Human Microbiome  Block 1  7.5 ECTS
- NPLK15000U  Basic Parasitology  Block 1  7.5 ECTS
- NBIA05008U  Biological Sequence Analysis  Block 1  7.5 ECTS
- LBIK10180U  Applied Microbiology  Block 2  7.5 ECTS
- NBIK14009U  Protists – Eucaryotic Microbiology  Block 2  7.5 ECTS
- NBIK17001U  Dynamical Models in Molecular Biology  Block 2  7.5 ECTS
- SBIK10200U  Human Parasitology  Block 2  7.5 ECTS
- SBIK10182U  From Gene to Function in Pathogenic Bacteria  Block 2  7.5 ECTS
- NBIK14035U  Medical Bacteriology  Block 3  7.5 ECTS
- NBIK16003U  Marine Microbiology and Virology  Block 3  7.5 ECTS
- NBIA08004U  Evolutionary Medicine  Block 3  7.5 ECTS
- NBIA09043U  Population Genetics  Block 3  7.5 ECTS
- NBIK14016U  Experimental Design and Statistical Methods in Biology (StatBio)  Block 3  7.5 ECTS
- NBIK16000U  The Human Microbiome - Experiments  Block 4  7.5 ECTS
- NBIA07023U  Bioinformatics of High Throughput Analyses  Block 4  7.5 ECTS
- NBIK14020U  Archaea Biology  Block 4  7.5 ECTS
- NFKK14001U  Project outside the course scope  Block 1-5  7.5 ECTS
- NFKK14006U  Project in practice  Block 1-5  15 ECTS

6.3.3 Elective subject elements

15 ECTS are to be covered as elective subject elements. All subject elements at MSc level may be included as elective subject elements in the MSc Programme.

BSc subject elements corresponding to 15 ECTS may be included in the MSc Programme.

Projects outside the course scope may be included in the elective section of the programme with up to 15 ECTS. Projects outside course scope may not exceed 15 ECTS in total of the programme. Projects outside course scope may be written as a combination of the restricted elective and elective section of the programme. The regulations are described in Appendix 5 to the shared section of the curriculum.

Projects in practice may be included in the elective section of the programme with up to 15 ECTS. Projects in practice may not exceed 15 ECTS in total of the programme. Project in practice may be written as a combination of the restricted elective and elective section of the programme. The regulations are described in Appendix 4 to the shared section of the curriculum.

6.3.4 Thesis

The MSc Programme in Biology with a specialisation in Microbiology includes a thesis corresponding to 60 ECTS, as described in Appendix 2 to the shared curriculum. The thesis must be written within the academic scope of the programme.

6.3.5 Academic mobility

The curriculum makes it possible to follow subject elements outside the Faculty of Science.

For students admitted in September the academic mobility for the MSc Programme in Biology with a specialisation in Microbiology is placed in block 3+4 of the 1st year (thesis full time).
For students admitted in February the academic mobility for the MSc Programme in Biology with a specialisation in Microbiology is placed in block 3+4 of the 1st year (thesis full time).

Academic mobility requires that the student follows the rules and regulations regarding pre-approval and credit transfer.

In addition the student has the possibility to arrange similar academic mobility in other parts of the programme.

6.4 Ecology
The specialisation is set at 120 ECTS and consists of the following:

- Compulsory subject elements, 7.5 ECTS.
- Restricted elective subject elements, 37.5 ECTS.
- Elective subject elements, 15 ECTS.
- Thesis, 60 ECTS.

6.4.1 Compulsory subject elements
The following subject element is to be covered (7.5 ECTS):

- **NBIK15007U** Advanced Ecology
  
  Block 1  7.5 ECTS

6.4.2 Restricted elective subject elements
37.5 ECTS are to be covered as subject elements from the following list:

- **NBIK14021U** Evolutionary Ecology  
  Block 1  7.5 ECTS
- **NPLK15000U** Basic Parasitology  
  Block 1  7.5 ECTS
- **NBIK15018U** Danish Natural Habitats, Ecology and Characterisation  
  Block 1  7.5 ECTS
- **NNMK14010U** Field Mycology and Identification of Fungi  
  Block 1  7.5 ECTS
- **LNAK10099U** Biodiversity in Urban Nature  
  Block 1  7.5 ECTS
- **NBIK15015U** Macroecology and Community Ecology  
  Block 2  7.5 ECTS
- **NBIK14022U** Methodology and Sampling in Environmental Management  
  Block 2  7.5 ECTS
- **NBIK14007U** Soil Biology  
  Block 2  7.5 ECTS
- **NBIK14001U** Climate Change and Biogeochemical Cycles  
  Block 2  7.5 ECTS
- **NBIK14099U** Protists – Eukaryotic Microbiology  
  Block 2  7.5 ECTS
- **NBIK12003U** Conservation Biology  
  Block 2  7.5 ECTS
- **NBIK14010U** Social Behaviour and Communication  
  Block 3  7.5 ECTS
- **NBA09043U** Population Genetics  
  Block 3  7.5 ECTS
- **NNMK11002U** Ornithology  
  Block 3  7.5 ECTS
- **NBIK14016U** Experimental Design and Statistical Methods in Biology (StatBio)  
  Block 3  7.5 ECTS
- **NIGK16000U** Applied Ecosystem Ecology  
  Block 3  7.5 ECTS
- **NBIK14018U** Terrestrial Ecosystem Processes and Global Change  
  Block 4  7.5 ECTS
- **NNMK15004U** Animal Morphology (from Sea Sponges to Vertebrates)  
  Block 4  7.5 ECTS
- **NBIK14017U** Invasion Biology  
  Block 4  7.5 ECTS
- **NBIK14013U** Arctic Biology  
  Block 4  7.5 ECTS
- **NBIK14004U** Freshwater Ecology  
  Block 4  7.5 ECTS
- **LNAK10010U** Environmental Impact Assessment  
  Block 4  7.5 ECTS
- **NNMK15003U** Climate Change and Biodiversity  
  Block 4  7.5 ECTS
- **NIGK14008U** VVM i praksis  
  Block 4  7.5 ECTS
- **NBIK18001U** Arctic Biology Field Course  
  Block 5  7.5 ECTS
- **NBIK15000U** Advanced Plant Identification  
  Block 5  7.5 ECTS
6.4.3 Elective subject elements
15 ECTS are to be covered as elective subject elements. All subject elements at MSc level may be included as elective subject elements in the MSc Programme.

BSc subject elements corresponding to 15 ECTS may be included in the MSc Programme.

Projects outside the course scope may be included in the elective section of the programme with up to 15 ECTS. Projects outside course scope may not exceed 15 ECTS in total of the programme. Projects outside course scope may be written as a combination of the restricted elective and elective section of the programme. The regulations are described in Appendix 5 to the shared section of the curriculum.

Projects in practice may be included in the elective section of the programme with up to 15 ECTS. Projects in practice may not exceed 15 ECTS in total of the programme. Project in practice may be written as a combination of the restricted elective and elective section of the programme. The regulations are described in Appendix 4 to the shared section of the curriculum.

6.4.4 Thesis
The MSc Programme in Biology with a specialisation in Ecology includes a thesis corresponding to 60 ECTS, as described in Appendix 2 to the shared curriculum. The thesis must be written within the academic scope of the programme.

6.4.5 Academic mobility
The curriculum makes it possible to follow subject elements outside the Faculty of Science.

For students admitted in September the academic mobility for the MSc Programme in Biology with a specialisation in Ecology is placed in block 3+4 of the 1st year (thesis full time).

For students admitted in February the academic mobility for the MSc Programme in Biology with a specialisation in Ecology is placed in block 3+4 of the 1st year (thesis full time).

Academic mobility requires that the student follows the rules and regulations regarding pre-approval and credit transfer.

In addition the student has the possibility to arrange similar academic mobility in other parts of the programme.

6.5 Marine Biology
The specialisation is set at 120 ECTS and consists of the following:
- Compulsory subject elements, 15 ECTS.
- Restricted elective subject elements, 30 ECTS.
- Elective subject elements, 15 ECTS
- Thesis, 60 ECTS.
### 6.5.1 Compulsory subject elements
The following subject element is to be covered (15 ECTS):

<table>
<thead>
<tr>
<th>Subject Element</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Biology</td>
<td>NBIK14008U</td>
<td></td>
<td></td>
<td>15.0</td>
</tr>
</tbody>
</table>

### 6.5.2 Restricted elective subject elements
30 ECTS are to be covered as subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Element</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protists - Eukaryotic Microbiology</td>
<td>NBIK14009U</td>
<td>The Biology of Fish</td>
<td>Block 2</td>
<td>7.5</td>
</tr>
<tr>
<td>Methodology and Sampling in Environmental Management</td>
<td>NBIK14022U</td>
<td>Marine Microbiology and Virology</td>
<td>Block 2</td>
<td>7.5</td>
</tr>
<tr>
<td>Sensory Biology</td>
<td>NBIK15019U</td>
<td>Methodology and Sampling in Environmental Management</td>
<td>Block 2</td>
<td>7.5</td>
</tr>
<tr>
<td>Experimental Design and Statistical Methods in Biology (StatBio)</td>
<td>NBIK14016U</td>
<td>Applied Phycology</td>
<td>Block 3</td>
<td>7.5</td>
</tr>
<tr>
<td>Animal Morphology (from Sea Sponges to Vertebrates)</td>
<td>NNMK15004U</td>
<td>Arctic Biology</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>Freshwater Ecology</td>
<td>NBIK14004U</td>
<td>VVM i praksis</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>Environmental Impact Assessment</td>
<td>LNAK10010U</td>
<td>Marine Faunistics: Biology and Systematics of Marine Fish and Invertebrates</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>Marine Faunistics: Biology and Systematics of Marine Fish and Invertebrates</td>
<td>NBIK15020U</td>
<td>Arctic Biology Field Course</td>
<td>Block 5</td>
<td>7.5</td>
</tr>
<tr>
<td>Project outside the course scope</td>
<td>NFKK14001U</td>
<td></td>
<td>Block 1-5</td>
<td>7.5</td>
</tr>
<tr>
<td>Project in Practice</td>
<td>NFKK14006U</td>
<td></td>
<td>Block 1-5</td>
<td>15</td>
</tr>
</tbody>
</table>

### 6.5.3 Elective subject elements
15 ECTS are to be covered as elective subject elements. All subject elements at MSc level may be included as elective subject elements in the MSc Programme.

BSc subject elements corresponding to 15 ECTS may be included in the MSc Programme.

Projects outside the course scope may be included in the elective section of the programme with up to 15 ECTS. Projects outside course scope may not exceed 15 ECTS in total of the programme. Projects outside course scope may be written as a combination of the restricted elective and elective section of the programme. The regulations are described in Appendix 5 to the shared section of the curriculum.

Projects in practice may be included in the elective section of the programme with up to 15 ECTS. Projects in practice may not exceed 15 ECTS in total of the programme. Project in practice may be written as a combination of the restricted elective and elective section of the programme. The regulations are described in Appendix 4 to the shared section of the curriculum.

### 6.5.4 Thesis
The MSc Programme in Biology with a specialisation in Marine Biology includes a thesis corresponding to 60 ECTS, as described in Appendix 2 to the shared curriculum. The thesis must be written within the academic scope of the programme.
6.5.5 Academic mobility
The curriculum makes it possible to follow subject elements outside the Faculty of Science.

For students admitted in September the academic mobility for the MSc Programme in Biology with a specialisation in Marine Biology is placed in block 3+4 of the 1st year.

For students admitted in February the academic mobility for the MSc Programme in Biology with a specialisation in Marine Biology is placed in block 3+4 of the 1st year.

Academic mobility requires that the student follows the rules and regulations regarding pre-approval and credit transfer.

In addition the student has the possibility to arrange similar academic mobility in other parts of the programme.

7 Exemptions
In exceptional circumstances, the study board may grant exemptions from the rules in the curriculum specified solely by the Faculty of Science.

8 Commencement etc.
8.1 Validity
This subject specific section of the curriculum applies to all students enrolled in the programme – see however Appendix 2.

8.2 Transfer
Students enrolled on previous curricula may be transferred to the new one as per the applicable transfer regulations or according to an individual credit transfer by the study board.

8.3 Amendments
The curriculum may be amended once a year so that any changes come into effect at the beginning of the academic year. Amendments must be proposed by the study board and approved by the Dean.

Notification about amendments that tighten the admission requirements for the programme will be published online at www.science.ku.dk one year before they come into effect.

If amendments are made to this curriculum, an interim arrangement may be added if necessary to allow students to complete their MSc Programme according to the amended curriculum.
Appendix 1 Tables

Tables for students admitted to the programme in September (summer):

### Table – Molecular Biology and Genetics

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Molecular Genetics</td>
<td>Experimental Higher Model Organisms</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
</tr>
<tr>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Thesis</td>
<td>Thesis</td>
</tr>
<tr>
<td>2nd year</td>
<td></td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Compulsory
- Restricted elective
- Elective

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.

### Table – Cell Biology and Physiology

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Cell Biology</td>
<td>Restricted elective</td>
<td>Cellular and Integrative Physiology</td>
<td>Elective</td>
</tr>
<tr>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd year</td>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
</tbody>
</table>

- Compulsory
- Restricted elective
- Elective

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.

### Table – Microbiology

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Bacteriology 1</td>
<td>Advanced Bacteriology 2</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
</tr>
<tr>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>2nd year</td>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
</tbody>
</table>

- Compulsory
- Restricted elective
- Elective

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.
### Table – Microbiology

<table>
<thead>
<tr>
<th></th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Advanced Bacteriology 1</td>
<td>Advanced Bacteriology 2</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
</tr>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td>2nd year</td>
<td>Elective</td>
<td>Elective</td>
<td></td>
<td>Thesis</td>
</tr>
</tbody>
</table>

- **Compulsory**
- **Elective**

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.

### Table – Ecology

<table>
<thead>
<tr>
<th></th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Advanced Ecology</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
</tr>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td>2nd year</td>
<td>Elective</td>
<td>Elective</td>
<td></td>
<td>Thesis</td>
</tr>
</tbody>
</table>

- **Compulsory**
- **Elective**

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.

### Table – Marine Biology

<table>
<thead>
<tr>
<th></th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Marine Biology</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd year</td>
<td></td>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
</tbody>
</table>

- **Compulsory**
- **Elective**

The table illustrates the recommended academic progression. The student is allowed to plan an alternative progression within the applicable rules.
Tables for students admitted to the programme in February (winter):

Table – Molecular Biology and Genetics*

<table>
<thead>
<tr>
<th></th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Theoretical Molecular Genetics</td>
<td>Experimental Higher Model Organisms</td>
</tr>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td>2nd year</td>
<td>Elective</td>
<td>Elective</td>
<td>Thesis</td>
<td></td>
</tr>
</tbody>
</table>

*This table is only relevant for students who begin the MSc Programme in February (block 3)

Table – Molecular Biology and Genetics*

<table>
<thead>
<tr>
<th></th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Theoretical Molecular Genetics</td>
<td>Experimental Higher Model Organisms</td>
</tr>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>2nd year</td>
<td>Thesis</td>
<td>Thesis</td>
<td>Thesis</td>
<td></td>
</tr>
</tbody>
</table>

*This table is only relevant for students who begin the MSc Programme in February (block 3)

Table – Cell Biology and Physiology*

<table>
<thead>
<tr>
<th></th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Cellular and Integrative Physiology</td>
<td>Elective</td>
<td>Advanced Cell Biology</td>
<td>Restricted elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>Restricted elective</td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td>2nd year</td>
<td>Thesis</td>
<td>Thesis</td>
<td>Thesis</td>
<td></td>
</tr>
</tbody>
</table>

*This table is only relevant for students who begin the MSc Programme in February (block 3)

Table – Microbiology*

<table>
<thead>
<tr>
<th></th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Advanced Bacteriology 1</td>
<td>Advanced Bacteriology 2</td>
</tr>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td>2nd year</td>
<td>Elective</td>
<td>Elective</td>
<td>Thesis</td>
<td></td>
</tr>
</tbody>
</table>

*This table is only relevant for students who begin the MSc Programme in February (block 3)
**Table – Microbiology***

<table>
<thead>
<tr>
<th>1st year</th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Advanced Bacteriology 1</td>
<td>Advanced Bacteriology 2</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table – Ecology***

<table>
<thead>
<tr>
<th>1st year</th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elective</td>
<td>Elective</td>
<td>Advanced Ecology</td>
<td>Restricted elective</td>
</tr>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table – Marine Biology***

<table>
<thead>
<tr>
<th>1st year</th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td>Marine Biology</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Restricted elective</td>
<td>Restricted elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This table is only relevant for students who begin the MSc Programme in February (block 3)
Appendix 2 Interim arrangements

The Shared Section of the BSc and MSc Curricula for Study Programmes applies to all students. The interim arrangements below only consist of parts where the current curriculum differs from the rules and regulations that were previously valid. Therefore, if information about relevant rules and regulations are missing, it can be found in the curriculum above.

1. General changes for students admitted in the academic year 2017/18
Students admitted to the MSc Programme in the academic year 2017/18 must finish the programme as listed in the curriculum above with the following exceptions.

1.1 Specialisations
Students admitted to the MSc Programme in the academic year 2017/18 are allowed to finish their programme with one of the specialisations that were outlined in the curriculum.

1.1.1 Ecology
Restricted elective subject elements
37.5 ECTS are to be covered as subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Elements</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted elective subject elements offered as part of the specialisation in “Ecology” in this curriculum (see above)</td>
<td></td>
</tr>
<tr>
<td>NBIK14024U Arctic Field Course</td>
<td>Discontinued* 7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.

1.1.2 Marine Biology
Restricted elective subject elements
30 ECTS are to be covered as subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Elements</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted elective subject elements offered as part of the specialisation in “Marine Biology” in this curriculum (see above)</td>
<td></td>
</tr>
<tr>
<td>NBIK14024U Arctic Field Course</td>
<td>Discontinued* 7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.

2 General changes for students admitted in the academic year 2016/17
Students admitted to the MSc Programme in the academic year 2016/17 must finish the programme as listed in the curriculum above with the following exceptions.

2.1 Specialisations
Students admitted to the MSc Programme in the academic year 2016/17 are allowed to finish their programme with one of the specialisations that were outlined in the curriculum.

2.1.1 Molecular Biology and Genetics
Restricted elective subject elements
30 ECTS are to be covered as subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Elements</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted elective subject elements offered as part of the specialisation in “Molecular Biology and Genetics” in this curriculum (see above)</td>
<td></td>
</tr>
<tr>
<td>NBIK14012U Biological Dynamics</td>
<td>Discontinued* 7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.

2.1.2 Cell Biology and Physiology
Restricted elective subject elements
22.5 ECTS may be covered by subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Elements</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted elective subject elements offered as part of the specialisation in “Cell Biology and Physiology” in this curriculum (see above)</td>
<td></td>
</tr>
</tbody>
</table>
2.1.3 Microbiology
Restricted elective subject elements
30 ECTS are to be covered as subject elements from the following list:

- Restricted elective subject elements offered as part of the specialisation in “Ecology” in this curriculum (see above)
- NBIK14012U Biological Dynamics Discontinued* 7.5 ECTS

* See course specific changes below.

2.1.4 Ecology
Restricted elective subject elements
37.5 ECTS are to be covered as subject elements from the following list:

- Restricted elective subject elements offered as part of the specialisation in “Ecology” in this curriculum (see above)
- NBIA08029U Feltkursus i Naturforvaltning Discontinued* 7.5 ECTS
- NIGK15003U Conservation Management of Protected Natural and Semi-natural Habitats Discontinued* 7.5 ECTS
- NBIA04058U Danske naturtyper, økologi og karakteristik Discontinued* 7.5 ECTS
- NBIA05050U Makrofauna i ferskvand: Økologi og Miljøbestemmelse Discontinued* 7.5 ECTS
- NBIK13001U Videregående plantebestemmelse Discontinued* 7.5 ECTS
- NBIK14024U Arctic Field Course Discontinued* 7.5 ECTS

* See course specific changes below.

2.1.5 Marine Biology
Restricted elective subject elements
30 ECTS are to be covered as subject elements from the following list:

- Restricted elective subject elements offered as part of the specialisation in “Marine Biology” in this curriculum (see above)
- NBIA05050U Makrofauna i ferskvand: Økologi og Miljøbestemmelse Discontinued* 7.5 ECTS
- NBIK14002U Ecophysiology of Brackish Water Invertebrates Discontinued* 7.5 ECTS
- NBIK14024U Arctic Field Course Discontinued* 7.5 ECTS

* See course specific changes below.

3 General changes for students admitted in the academic year 2015/16
Students admitted to the MSc Programme in the academic year 2015/16 must finish the programme as listed in the curriculum above with the following exceptions.

3.1 Specialisations
Students admitted to the MSc Programme in the academic year 2015/16 are allowed to finish their programme with one of the specialisations that were outlined in the curriculum.

3.1.1 Molecular Biology and Genetics
Restricted elective subject elements
30 ECTS are to be covered as subject elements from the following list:

- Restricted elective subject elements offered as part of the specialisation in “Molecular Biology and Genetics” in this curriculum (see above)
3.1.2 Cell Biology and Physiology
The specialisation is continued in the present curriculum but has been changed in its composition of the compulsory and restricted elective subject elements. From the academic year 2016/17 it is no longer required to pass the course “Cellular Signaling in Health and Disease” as a compulsory subject element. The course can count as a restricted elective subject element.

Restricted elective subject elements
15 ECTS may be covered by subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Element</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK14012U</td>
<td></td>
<td>7.5</td>
</tr>
</tbody>
</table>

* See course specific changes below.

3.1.3 Microbiology

Restricted elective subject elements
30 ECTS may be covered by subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Element</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK13016U</td>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14012U</td>
<td></td>
<td>7.5</td>
</tr>
</tbody>
</table>

* See course specific changes below.

3.1.4 Ecology

Restricted elective subject elements
30 ECTS may be covered by subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Element</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK13016U</td>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14024U</td>
<td></td>
<td>7.5</td>
</tr>
</tbody>
</table>

* See course specific changes below.

3.1.5 Marine Biology

Restricted elective subject elements
30 ECTS may be covered by subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Element</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK13001U</td>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td>NBIA04058U</td>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td>NBIA05050U</td>
<td></td>
<td>7.5</td>
</tr>
</tbody>
</table>

* See course specific changes below.
4 General changes for students admitted in the academic year 2014/15 or earlier

Students admitted to the MSc Programme in the academic year 2014/15 or earlier must finish the programme as listed in the curriculum above with the following exceptions.

4.1 Specialisations

Students admitted to the MSc Programme in the academic year 2014/15 or earlier are allowed to finish their programme with one of the seven specialisations that were outlined in the curriculum.

In the current curricula the three specialisations: “Ecology and Evolution”, “Terrestrial Ecology” and “Aquatic Biology” are combined into a new specialisation: “Ecology”.

Four specialisations are continued in the current curricula but they have been changed in the composition of the compulsory, restricted elective and elective subject elements.

4.1.1 General Profile in Biology

The specialisation is discontinued. It was offered for the last time in the academic year 2014/15.

Structure of the programme

The specialisation is set at 120 ECTS and consists of the following:

- Restricted elective subject elements corresponding to 22.5, 37.5 or 52.5 ECTS.
- Elective subject elements, 37.5 ECTS.
- Thesis, 30, 45 or 60 ECTS.

Restricted elective subject elements

22.5, 37.5 or 52.5 ECTS are to be covered as subject elements from courses from the following list:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK14021U</td>
<td>Evolutionary Ecology</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA05008U</td>
<td>Biological Sequence Analysis</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NNMK14010U</td>
<td>Field Mycology and Identification of Fungi</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NIB10009U</td>
<td>Gene Technology (Bachelor level)</td>
<td>Block 1</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIK10015U</td>
<td>Cell Cycle Control and Cancer</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK10017U</td>
<td>RNA Biology</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14008U</td>
<td>Marine Biology</td>
<td>Block 1</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIK14009U</td>
<td>Protists – Eukaryotic Microbiology</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14005U</td>
<td>The Biology of Fish</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14007U</td>
<td>Soil Biology</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIB14019U</td>
<td>Immunology (BA level)</td>
<td>Block 2</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIK10020U</td>
<td>Developmental Biology</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK15015U</td>
<td>Macroecology and Community Ecology</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14022U</td>
<td>Methodology and Sampling in Environmental Management</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK13005U</td>
<td>Experimental Higher Model Organisms</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14034U</td>
<td>Molecular Neurobiology</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14016U</td>
<td>Experimental Design and Statistical Methods in Biology</td>
<td>Block 3</td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFYK14039U</td>
<td>Radioactive Isotopes and Ionizing Radiation</td>
<td>Block 3</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIA09043U</td>
<td>Population Genetics</td>
<td>Block 3</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14010U</td>
<td>Social Behavior and Communication</td>
<td>Block 3</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14014U</td>
<td>Cellular and Integrative Physiology</td>
<td>Block 3</td>
<td>15</td>
</tr>
<tr>
<td>NBIA08004U</td>
<td>Evolutionary Medicine</td>
<td>Block 3</td>
<td>7.5</td>
</tr>
<tr>
<td>NNMK11002U</td>
<td>Ornithology</td>
<td>Block 3</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14020U</td>
<td>Archaea Biology</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14017U</td>
<td>Invasion Biology</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>LNAK10100U</td>
<td>Thematic Course II: Rural Landscape Management and Planning</td>
<td>Block 4</td>
<td>15</td>
</tr>
<tr>
<td>NBIK14004U</td>
<td>Freshwater Ecology</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>NBK11009U</td>
<td>Experimental Cell Biology</td>
<td>Block 4</td>
<td>15</td>
</tr>
<tr>
<td>NBIK13017U</td>
<td>Molecular Biotechnology</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>NNMK15004U</td>
<td>Animal Morphology (from Sea Sponges to Vertebrates)</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14018U</td>
<td>Terrestrial Ecosystem Processes and Global Change</td>
<td>Block 4</td>
<td>7.5</td>
</tr>
<tr>
<td>NNMK14000U</td>
<td>International Nature Conservation</td>
<td>Block 5</td>
<td>7.5</td>
</tr>
<tr>
<td>NBIK14024U</td>
<td>Arctic Field Course</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA08029U</td>
<td>Feltkurs i naturforvaltning</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK13001U</td>
<td>Videregående plantebestemmelse</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA04100U</td>
<td>Marin faunistik: Marine fisk og invertebraters diversitet og biologi</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA08032U</td>
<td>Marinbiologisk sommerkursus</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NNMK14012U</td>
<td>Phylogenetic and Molecular Methods</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NNMK14009U</td>
<td>Entomology</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA09032U</td>
<td>Biological Research Project</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NNDK13000U</td>
<td>Videregående Naturfagsdidaktik</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NNMK14011U</td>
<td>Animal Morphology (from Sea Sponges to Vertebrates)</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA07032U</td>
<td>Evolution and Ancient DNA: Practice and Theory</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14012U</td>
<td>Biological Dynamics</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA09049U</td>
<td>Microbial Ecology</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NIBI13012U</td>
<td>Epigenetics and Cell Differentiation (BA level)</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA04008U</td>
<td>Molecular Genetics (BA level)</td>
<td>Discontinued*</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIK14011U</td>
<td>Microbial Biotechnology</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA04055U</td>
<td>Advanced Bacteriology</td>
<td>Discontinued*</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIK10018U</td>
<td>Cell Biology</td>
<td>Discontinued*</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIK13006U</td>
<td>Macro Ecology</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA09041U</td>
<td>Emerging Molecular Techniques in Microbiology</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK12011U</td>
<td>Ion Transport in Cancer</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA04058U</td>
<td>Danske naturtyper, økologi og karakteristik</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA05050U</td>
<td>Makrofauna i ferskvand: økologi og miljøbestemmelse</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK12009U</td>
<td>Marine Microbiology and Virology</td>
<td>Discontinued*</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIK14002U</td>
<td>Ecophysiology of Brackish Water Invertebrates</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.

**Thesis**
Disregarding of the chosen specialisation students admitted in the academic year 2014/15 or earlier can freely choose a thesis corresponding to 30, 45 or 60 ECTS.

**Competence profile**
On completion of the programme a MSc in Biology has acquired the following:
Knowledge about:
- His or her field of specialisation at a high scientific level and related subject areas at a scientific level.

Skills in/to:
- Use the methods related to the field of specialisation, including operation of relevant scientific equipment.
- Conduct biological investigations, including scientific experiments, in the laboratory or in the field.
- Generate and process complex biological data sets.
- Work scientifically.

Competences in/to:
- Effectively and systematically acquire new knowledge and study biological subjects at a high scientific level.
- Think and work systematically and analytically.
- Assess and analyse large volumes of data and complex biological relationships.
- Evaluate and analyse biological problems at a high academic level.
- Analyse and evaluate own findings and those of others in a scientific context and apply the results in relevant and commercial and societal contexts.
- Critically evaluate and put into perspective findings within the field of specialisation and related fields.

Title
If this specialisation has been taken, the student will achieve the title Master of Science (MSc) in Biology. In Danish: Cand.scient. (candidatus/candidata scientiarum) i biologi.

4.1.2 Ecology and Evolution
The specialisation is set at 120 ECTS and consists of the following:
- Compulsory subject elements, 15 ECTS.
- Restricted elective subject elements, 30, 45 or 60 ECTS.
- Elective subject elements, 15 ECTS.
- Thesis, 30, 45 or 60 ECTS.

Compulsory subject elements
The following subject elements are to be covered (15 ECTS):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK14021U</td>
<td>Evolutionary Ecology</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK13006U</td>
<td>Macro Ecology</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.

Restricted elective subject elements
30, 45 or 60 ECTS are to be covered by subject elements from the following list:

Restricted elective subject elements offered as part of the specialisation in “Ecology” in this curriculum (see above)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK14000U</td>
<td>International Nature Conservation</td>
<td>Block 5</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK13001U</td>
<td>Videregående plantebestemmelse</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK13013U</td>
<td>Advanced Fungal Identification</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA09032U</td>
<td>Biological Research Project within the field of ecology and evolution</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NNMK14009U</td>
<td>Entomology</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>
Thesis
Disregarding of the chosen specialisation students admitted in the academic year 2014/15 or earlier can freely choose a thesis corresponding to 30, 45 or 60 ECTS.

Competence profile
On completion of the programme a MSc in Biology with a specialisation in Ecology and Evolution has acquired the following:

Knowledge about:
- Ecological and evolutionary processes.
- The spatial and temporal distribution of species and organisms.
- The biology of selected groups of organisms.
- Practical and societal aspects of ecology and evolution.

Skills in/to:
- Plan and run biology research projects that combine theoretical and experimental/empirical work, both in the laboratory and in the field.
- Summarise a research subject using original scientific literature as the basis.
- Use quantitative, including statistical, methods of relevance to the subject area.
- Determine selected groups of organisms.
- Disseminate knowledge about the subject area in both academic and non-academic contexts.
- Identify biological problems relevant to society and propose solutions.

Competences in/to:
- Illustrate and analyse a biological phenomenon by distinguishing between immediate (how?) and evolutionary (why?) causes and explanations.
- Explain and discuss the distribution and density of species on both a local and global scale.
- Evaluate the occurrence of species in the wild on both an ecological and an evolutionary timescale.
- Explain and discuss the evolutionary adaptations of organisms to a given environment and their behaviour in relation to/response to both members of the same species and individuals of other species.
- Evaluate interactions between individuals at different trophic levels, e.g. plants/herbivores, prey/predators, and host organisms/parasites/diseases.
- Assess knowledge of biology in the management of stocks, biodiversity and animal welfare.

Title
If a specialisation in Ecology and Evolution has been chosen, the title awarded is Master of Science in Biology with a specialisation in Ecology and Evolution.

4.1.3 Terrestrial Ecology
The specialisation is discontinued. It was offered for the last time in the academic year 2014/15.

Structure of the programme
The specialisation is set at 120 ECTS and consists of the following:
- Compulsory subject elements, 22.5 ECTS.
- Restricted elective subject elements, 22.5, 37.5 or 52.5 ECTS.
- Elective subject elements, 15 ECTS.
- Thesis, 30, 45 or 60 ECTS.
Compulsory subject elements
The following subject elements are to be covered (22.5 ECTS):

- NBIK14007U Soil Biology Block 2 7.5 ECTS
- NBIK14018U Terrestrial Ecosystem Processes and Global Change Block 4 7.5 ECTS
- NBIA09049U Microbial Ecology Discontinued* 7.5 ECTS

* See course specific changes below.

Restricted elective subject elements
22.5, 37.5 or 52.5 ECTS may be covered by subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Element</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NBIK14009U</strong> Protists – Eukaryotic Microbiology Block 2 7.5 ECTS</td>
</tr>
<tr>
<td><strong>NBIK14022U</strong> Methodology and Sampling in Environmental Management Block 2 7.5 ECTS</td>
</tr>
<tr>
<td><strong>NBIK14016U</strong> Experimental Design and Statistical Methods in Biology Block 3 7.5 ECTS</td>
</tr>
<tr>
<td><strong>NBIA09032U</strong> Biological Research Project within the field of terrestrial ecology Discontinued* 7.5 ECTS</td>
</tr>
<tr>
<td><strong>NBIA04058U</strong> Danske naturtyper, økologi og karakteristik Discontinued* 7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.

Thesis
Disregarding of the chosen specialisation students admitted in the academic year 2014/15 or earlier can freely choose a thesis corresponding to 30, 45 or 60 ECTS.

Competence profile
On completion of the programme a MSc in Biology with a specialisation in Terrestrial Ecology has acquired the following:

Knowledge about:
- The terrestrial ecosystem's function, both above and below ground, and its interaction with local, regional and/or global systems.
- Bacteria, fungi, protists and multicellular organisms of importance to the terrestrial ecosystem's function and/or which are typical of terrestrial environments.
- Soil biology.
- Microbial ecology.
- Effects of global change.
- Ecosystem services, e.g. vegetation, clean air and clean water, organism banks and carbon sequestration.

Skills in/to:
- Identify, manage and isolate key organisms.
- Use basic tools for ecological engineering, e.g. soil purification and stimulation of plant growth.
- Communicate important ecological contexts.
- Develop action plans for soil purification

Competences in/to:
- Understand and present the structure and function of complex ecosystems.
- Analyse the occurrence and activity of organisms in relation to the physical/chemical environment.
- Manage, advise on and conduct research into terrestrial ecosystems, based on in-depth biological knowledge of systems.
- Use organisms and genetic resources in an industrial context.
- Advise on environmental management issues.
Title
If a specialisation in Terrestrial Ecology has been chosen, the title awarded is Master of Science in Biology with a specialisation in Terrestrial Ecology.

4.1.4 Aquatic Biology
The specialisation is discontinued. It was offered for the last time in the academic year 2014/15.

Structure of the programme
The specialisation is set at 120 ECTS and consists of the following:
- Compulsory subject elements, 22.5 ECTS.
- Restricted elective subject elements, 22.5, 37.5 or 52.5 ECTS.
- Elective subject elements, 15 ECTS.
- Thesis, 30, 45 or 60 ECTS.

Compulsory subject elements
The following subject elements are to be covered (22.5 ECTS):
- NBIK14008U Marine Biology Block 1 15 ECTS
- NBIK14004U Freshwater Ecology Block 4 7.5 ECTS

Restricted elective subject elements
22.5, 37.5 or 52.5 ECTS are to be covered by subject elements from the following list:

<table>
<thead>
<tr>
<th>Subject Element</th>
<th>Description</th>
<th>Block</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIK14005U</td>
<td>The Biology of Fish</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK14009U</td>
<td>Protists – Eukaryotic Microbiology</td>
<td>Block 2</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NNMK15004U</td>
<td>Animal Morphology (from Sea Sponges to Vertebrates)</td>
<td>Block 4</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA05050U</td>
<td>Makrofauna i ferskvand: Økologi og miljøbedømmelse</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA04100U</td>
<td>Marin faunistik: Marine fiskos og invertebraters diversitet og biologi</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA08032U</td>
<td>Marinbiologisk sommerkursus</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA09032U</td>
<td>Biological Research Project within the field of aquatic biology</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NNMK14011U</td>
<td>Animal Morphology (from Sea Sponges to Vertebrates)</td>
<td>Discontinued*</td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.

Thesis
Disregarding of the chosen specialisation students admitted in the academic year 2014/15 or earlier can freely choose a thesis corresponding to 30, 45 or 60 ECTS.

Competence profile
On completion of the programme a MSc in Biology with a specialisation in Aquatic Biology has acquired the following:

Knowledge about:
- Marine and limnetic ecosystem habitats and organisms, as well as the related fluxes of their energy and matter.

Skills in/to:
- Identify aquatic organisms and categories them into overall groups.

Competences in/to:
- Describe the structure and function of aquatic ecosystems, their habitats and biodiversity.
- Explain the fluxes of energy and organic and inorganic matter in aquatic systems.
• Explain the important physical, chemical and biological characteristics of different aquatic systems, and understand how organisms adapt and respond to changes in them.
• Use and develop the latest and most advanced experimental techniques, methods of quantification and equipment, both in the field and in the laboratory, including the competencies required to evaluate the complexity of the data collected, sources of error and methodological uncertainties.
• Analyse and interpret complex aquatic data using modern methods of quantitative analysis.
• Hypothesise, independently formulate and conduct experiments, both in the field and in the laboratory, and explain, communicate and put into perspective a scientific problem, both orally and in writing.

Title
If a specialisation in Aquatic Biology has been chosen, the title awarded is Master of Science in Biology with a specialisation in Aquatic Biology.

4.1.5 Molecular Biology and Genetics

Structure of the programme
The specialisation is set at 120 ECTS and consists of the following:
• Compulsory subject elements, 30 ECTS.
• Restricted elective subject elements, 15, 30 or 45 ECTS.
• Elective subject elements, 15 ECTS.
• Thesis, 30, 45 or 60 ECTS.

Compulsory subject elements
The following subject elements are to be covered (30 ECTS):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Level</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIA04008U</td>
<td>Molecular Genetics (Bachelor level)</td>
<td></td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIB13012U</td>
<td>Epigenetics and Cell Differentiation (Bachelor level)</td>
<td></td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIK13005U</td>
<td>Experimental Higher Model Organisms</td>
<td></td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.

Restricted elective subject elements
15, 30 or 45 ECTS are to be covered by subject elements from the following list:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Level</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIB10009U</td>
<td>Gene Technology (Bachelor level)</td>
<td>Block 1</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NBIA05008U</td>
<td>Biological Sequence Analysis</td>
<td>Block 1</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIB14019U</td>
<td>Immunology (Bachelor level)</td>
<td>Block 2</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>NFYK14039U</td>
<td>Radioactive Isotopes and Ionizing Radiation</td>
<td>Block 3</td>
<td>7.5 ECTS</td>
</tr>
<tr>
<td>NBIA09032U</td>
<td>Biological Research Project within the field of molecular biology and genetics</td>
<td></td>
<td>7.5 ECTS</td>
</tr>
</tbody>
</table>

* See course specific changes below.

Thesis
Disregarding of the chosen specialisation students admitted in the academic year 2014/15 or earlier can freely choose a thesis corresponding to 30, 45 or 60 ECTS.

4.1.6 Cell Biology and Physiology

Structure of the programme
The specialisation is set at 120 ECTS and consists of the following:
• Compulsory subject elements, 30 ECTS.
• Restricted elective subject elements, 15, 30 or 45 ECTS.
• Elective subject elements, 15 ECTS.
• Thesis, 30, 45 or 60 ECTS.
Compulsory subject elements
The following subject elements are to be covered 30 ECTS:

- NBIK10018U  Cell Biology  Discontinued*  15 ECTS
- NBIK14014U  Cellular and Integrative Physiology  Block 3  15 ECTS

Restricted elective subject elements
15, 30 or 45 ECTS are to be covered by subject elements from the following list:

- Restricted elective subject elements offered as part of the specialisation in “Cell Biology and Physiology” in this curriculum (see above)
- NBIK17032U  Biological Research Project within the field of Cell Biology and Physiology  Discontinued*  7.5 ECTS
- NBIK12011U  Ion Transport in Cancer  Discontinued*  7.5 ECTS

* See course specific changes below.

Thesis
Disregarding of the chosen specialisation students admitted in the academic year 2014/15 or earlier can freely choose a thesis corresponding to 30, 45 or 60 ECTS.

4.1.7 Microbiology
Structure of the programme
The specialisation is set at 120 ECTS and consists of the following:

- Compulsory subject elements, 15 ECTS.
- Restricted elective subject elements, 30, 45 or 60 ECTS.
- Elective subject elements, 15 ECTS.
- Thesis, 30, 45 or 60 ECTS.

Compulsory subject elements
The following subject element is to be covered (15 ECTS):

- NBIA04055U  Advanced Bacteriology  Discontinued*  15 ECTS

* See course specific changes below.

Restricted elective subject elements
30, 45 or 60 ECTS are to be covered by subject elements from the following list:

- Restricted elective subject elements offered as part of the specialisation in “Microbiology” in this curriculum (see above)
- NBIK14011U  Microbial Biotechnology  Discontinued*  7.5 ECTS
- NBIA09032U  Biological Research Project within the field of Microbiology  Discontinued*  7.5 ECTS
- NBIA09041U  Emerging Molecular Techniques in Microbiology  Discontinued*  7.5 ECTS
- NBIA09049U  Microbial Ecology  Discontinued*  7.5 ECTS

* See course specific changes below.

Thesis
Disregarding of the chosen specialisation students admitted in the academic year 2014/15 or earlier can freely choose a thesis corresponding to 30, 45 or 60 ECTS.

4.1.8 Marine Biology
Structure of the programme
The specialisation is set at 120 ECTS and consists of the following elements:

- Compulsory subject elements, 15 ECTS.
- Restricted elective subject elements, 30, 45 or 60 ECTS.
- Elective subject elements, 15 ECTS.
- Thesis, 30, 45 or 60 ECTS.
Restriced elective subject elements

30, 45 or 60 ECTS are to be covered by subject elements from the following list:

- Restricted elective subject elements offered as part of the specialisation in “Marine Biology” in this curriculum (see above)
- NBIK10025U Experimental Marine Biology Discontinued* 7.5 ECTS
- NBIA08032U Marinbiologisk sommerkursus Discontinued* 7.5 ECTS
- NBIA09032U Biological Research Project within the field of marine biology Discontinued* 7.5 ECTS
- NBIA04100U Marin faunistik: Marine fisks og invertebraters diversitet og biologi Discontinued* 7.5 ECTS
- NNMK14011U Animal Morphology (from Sea Sponges to Vertebrates) Discontinued* 7.5 ECTS
- NBIK14002U Ecophysiology of Brackish Water Invertebrates Discontinued* 7.5 ECTS

* See course specific changes below.

Thesis

Disregarding of the chosen specialisation students admitted in the academic year 2014/15 or earlier can freely choose a thesis corresponding to 30, 45 or 60 ECTS.

5 Course specific changes

<table>
<thead>
<tr>
<th>Discontinued course</th>
<th>Interim arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Bacteriology (NBIA04055U), 15 ECTS</td>
<td>The course was a restricted elective course on “General Profile in Biology” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16. The course is equivalent to Advanced Bacteriology 1 (NBIK15003U), 7.5 ECTS + Advanced Bacteriology 2 (NBIK15005U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Advanced Fungal Identification (NBIA13013U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the specialisation “Ecology and Evolution” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16. The course is equivalent to Field Mycology and Identification of Fungi (NNMK14010U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Animal Morphology (from Sea Sponges to Vertebrates) (NNMK14011U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the “General Profile in Biology” and the specialisation in “Ecology and Evolution”, “Aquatic Biology” and “Marine Biology” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16. The course is unchanged except for the institute affiliation and the course code and is equivalent to Animal Morphology (from Sea Sponges to Vertebrates) (NNMK15004U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Arctic Field Course (NBIK14024U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the specialisation in “Ecology” and “Marine Biology” in the academic year 2017/18 or earlier. The course was offered for the last time in the academic year 2017/18. The course has changed title and is identical “Arctic Biology Field Course” (NBIK18001U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Basic Parasitology (LBIK10199U),</td>
<td>The course was a restricted elective course on the specialisation in “Microbiology” in the academic year 2014/15 or earlier.</td>
</tr>
<tr>
<td>Course</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>7.5 ECTS</td>
<td>The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16. The course is equivalent to Basic Parasitology (NPLK15000U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Biological Dynamics (NBIK14012U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the specialisations in “Molecular Biology and Genetics” and “Microbiology” in the academic year 2015/16 and 2016/17 and on the “General Profile in Biology” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2016/17. The course is identical to “Dynamical Models in Molecular Biology” (NBIK17001U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Biological Research Project (NBIA09032U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the “General Profile in Biology” and all of the specialisations in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16. The course is replaced by the possibility of doing a “Project Outside the Course Scope” (NFKK14001U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Cell Biology (NBIK10018U), 15 ECTS</td>
<td>The course was a restricted elective course on the general profile and compulsory on the specialisation in “Cell Biology and Physiology” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16. (A last exam was offered June 22nd 2015.) The course is equivalent to the combination of: 1) Advanced Cell Biology (NBIK15006U), 7.5 ECTS and 2) Cellular Signaling in Health and Disease (NBIK15009U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Conservation Management of Protected Natural and Semi-natural Habitats (NIGK15003U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the specialisation in “Ecology” in the academic year 2016/17. The course was offered for the last time in the academic year 2017/18 and a third exam is offered in the academic year 2018/19.</td>
</tr>
<tr>
<td>“Danske naturtyper, økologi og karakteristik” (NBIA04058U)</td>
<td>The course was a restricted elective course on the specialisation “Ecology” in the academic year 2016/17 and 2015/16 and on the specialisations “General Profile in Biology” and “Terrestrial Ecology” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2016/17 and a third exam is offered in the academic year 2017/18.</td>
</tr>
<tr>
<td>Ecosystem Ecology (NBIK14000U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the specialisation in Ecology in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2015/16 and a third exam is offered in the academic year 2015/16. The course has changed title and is identical “Applied Ecosystem Ecology” (NIGK16000U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Ecophysiology of Brackish Water Invertebrates (NBIK14002U)</td>
<td>The course was a restricted elective course on the specialisations in “Marine Biology” in the academic year 2016/17 or earlier and in “General Profile in Biology” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2016/17 and a third</td>
</tr>
<tr>
<td>Course Title</td>
<td>Exam Offered</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>Emerging Molecular Techniques in Microbiology</strong> (NBIA09041U), 7.5 ECTS</td>
<td>exam in 2017/18</td>
</tr>
<tr>
<td><strong>Entomology (MSc level)</strong> (NMMK14009U), 7.5 ECTS</td>
<td>exam in 2015/16</td>
</tr>
<tr>
<td><strong>Epigenetics and Cell Differentiation</strong> (BSc level) (NBIB13012U), 7.5 ECTS</td>
<td>exam in 2015/16</td>
</tr>
<tr>
<td><strong>Evolutionary Ecology</strong> (NBIA04061U), 7.5 ECTS</td>
<td>exam in 2013/14</td>
</tr>
<tr>
<td><strong>Evolution and Ancient DNA: Practice and Theory</strong> (NBIA07032U), 7.5 ECTS</td>
<td>exam in 2014/15</td>
</tr>
<tr>
<td><strong>Experimental Marine Biology</strong> (NBIK10025U), 7.5 ECTS</td>
<td>exam in 2015/16</td>
</tr>
<tr>
<td><strong>Feltkursus i naturforvaltning</strong> (NBIA08029U), 7.5 ECTS</td>
<td>exam in 2015/16</td>
</tr>
<tr>
<td><strong>Freshwater ecology</strong> (NBIK15012U), 15 ECTS</td>
<td>exam in 2015/16</td>
</tr>
<tr>
<td><strong>Ion Transport in Cancer</strong> (NBIK12011U), 7.5 ECTS</td>
<td>exam in 2015/16</td>
</tr>
</tbody>
</table>

Page 34 of 37
<table>
<thead>
<tr>
<th>7.5 ECTS</th>
<th>in Biology” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2015/16 and a third exam is offered in the academic year 2017/18.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro Ecology (NBIK13006U), 7.5 ECTS</td>
<td>The course was compulsory on the specialisation in Ecology and Evolution and restricted elective on the general profile in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16. The course is equivalent to “Macroeocology and Community Ecology” (NBIK15015U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Macro Fauna in Freshwater: Ecology and Environmental Assessment (NBIK15023U), 7.5 ECTS</td>
<td>The course was compulsory on the specialisation in Ecology and Evolution and restricted elective on the general profile in the academic year 2015/16. The course was offered for the last time in the academic year 2015/16 and a third exam is offered in the academic year 2016/17. The course has changed language and is identical with “Makrofauna i ferskvand: Økologi og Miljøbestemmelse” (Norgia05050U), 7.5 ECTS. The course is also equivalent to “Freshwater Ecology” (NBI14004U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Makrofauna i ferskvand: Økologi og Miljøbestemmelse (NBIA05050U)</td>
<td>The course was a restricted elective course on the specialisations in “Cell Biology and Physiology” and “Marine Biology” in the academic year 2015/16 and 2016/17 and on the specialisations in “General Profile in Biology” and “Aquatic Biology” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2016/17 and a third exam is offered in the academic year 2017/18.</td>
</tr>
<tr>
<td>Marinbiologisk sommerkursus (NBIA08032U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the general profile and on the specialisations in Aquatic Ecology and Marine Biology. The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16. The course has changed from master’s level to bachelor’s level and is equivalent to Marinbiologisk sommerkursus (NBIB15001U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Marin faunistik: Marine fisks og invertebraters diversitet og biologi (NBIA04100U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the specialisations “General Profile in Biology”, “Ecology and Evolution”, “Aquatic Biology” and “Marine Biology” in the academic year 2014/15 or earlier. The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16. The course has changed language from Danish to English and is equivalent to Marine Faunistics: Biology and Systematics of Marine Fish and Invertebrates” (NBI15020U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Marine Microbiology and Virology (NBIK12009U), 15 ECTS</td>
<td>The course was a restricted elective course on the specialisation in “Microbiology” and “Marine Biology” in the academic year 2015/16 or earlier. The course was offered for the last time in the academic year 2015/16 and a third exam is offered in the academic year 2016/17. The course has changed from weighing 15 ECTS to weighing 7.5 ECTS. The name is unchanged Marine Microbiology and Virology (NBIK16003U), but the course is half the size and is therefore not equivalent.</td>
</tr>
<tr>
<td>Course Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Microbial Biotechnology (NBIK14011U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the General Profile and on the specialisation in Microbiology.</td>
</tr>
<tr>
<td></td>
<td>The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16.</td>
</tr>
<tr>
<td></td>
<td>The course has changed from master’s level to bachelor’s level and is equivalent to Microbial Biotechnology (NBIB15008U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Microbial Ecology (NBIA09049U), 7.5 ECTS</td>
<td>The course was compulsory at the specialisation in “Terrestrial Ecology” in the academic year 2014/15 or earlier. The course was a restricted elective course on the specialisation in “Microbiology” and “Ecology” in the academic year 2015/16 or earlier.</td>
</tr>
<tr>
<td></td>
<td>The course was offered for the last time in the academic year 2015/16 and a third exam is offered in the academic year 2016/17.</td>
</tr>
<tr>
<td></td>
<td>The course has changed from master’s level to bachelor’s level and language from English to Danish. It is equivalent to Mikrobiel Økologi (NBIB16003U), 7.5 ECTS. If the student has not passed the course Microbial Ecology (NBIA09049U) they must follow the Danish course.</td>
</tr>
<tr>
<td>Molecular Genetics (NBIA04008U), 15 ECTS</td>
<td>The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16.</td>
</tr>
<tr>
<td></td>
<td>The course is equivalent to Theoretical Molecular Genetics (NBIK15017U), 7.5 ECTS + Experimental Molecular Genetics (NBIK15011U), 7.5 ECTS.</td>
</tr>
<tr>
<td></td>
<td>The course was a compulsory course at the specialisation in Molecular Biology and Genetics and a restricted elective course on the general profile.</td>
</tr>
<tr>
<td>Mycology (NBIK13016U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the specialisation in “Microbiology” and “Ecology” in the academic year 2015/16.</td>
</tr>
<tr>
<td></td>
<td>The course was offered for the last time in the academic year 2017/18.</td>
</tr>
<tr>
<td></td>
<td>The course has changed title and is identical “Fungal Biology” (NBIK18000U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Phylogenetic and Molecular Methods (NNMK14012U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the specialisation “General Profile in Biology” in the academic year 2015/16 or earlier.</td>
</tr>
<tr>
<td></td>
<td>The course was offered for the last time in the academic year 2015/16 and a third exam is offered in the academic year 2016/17.</td>
</tr>
<tr>
<td>Videregående Naturfagsdidaktik (NNDK13000U), 7.5 ECTS</td>
<td>The course was offered for the last time in the academic year 2014/15 and a third exam is offered in the academic year 2015/16.</td>
</tr>
<tr>
<td></td>
<td>The course was a restricted elective course on the general profile and is equivalent to Naturfagsdidaktik for Biologi (DidBio) (NNDK15000U), 7.5 ECTS.</td>
</tr>
<tr>
<td>Videregående plantebestemmelse (NBIK13001U), 7.5 ECTS</td>
<td>The course was a restricted elective course on the specialisation “Ecology” in the academic year 2016/17 and 2015/16 and on the specialisations “General Profile in Biology” and “Ecology and Evolution” in the academic year 2014/15 or earlier.</td>
</tr>
<tr>
<td></td>
<td>The course was offered for the last time in the academic year 2016/17 and a third exam is offered in the academic year 2017/18.</td>
</tr>
</tbody>
</table>
Appendix 3 Description of objectives for the thesis

After completing the thesis, the student should have:

Knowledge about:
- Scientific problems within the study programme’s subject areas.
- Methodologies/theories based on international research for use in his/her work with the problem formulation.
- How to apply and critically evaluate theories/methodologies, including their applicability and limitations.
- How the production and interpretation of findings/material depend on the theory/methodology chosen and the delimitation chosen.
- How to discuss academic issues arising from the thesis.
- How to draw conclusions in a clear and academic manner in relation to the problem formulation and, more generally, considering the topic and the subject area.
- How to discuss and communicate the academic and social significance, if any, of the thesis.

Skills in/to:
- Apply and critically evaluate theories/methodologies, including their applicability and limitations.
- Assess the extent to which the production and interpretation of findings/material depend on the theory/methodology chosen and the delimitation chosen.
- Discuss academic issues arising from the thesis.
- Draw conclusions in a clear and academic manner in relation to the problem formulation and, more generally, considering the topic and the subject area.
- Discuss and communicate the academic and social significance, if any, of the thesis based on ethical principles.

If the thesis includes experimental content/own data production, the student will also be able to:
- Substantiate the idea of conducting experimental work/producing own data in order to shed light on the topic as formulated in the problem formulation.
- Process data through a choice of academic analysis methods and present findings objectively and in a concise manner.
- Assess the credibility of own findings based on relevant data processing.

Competences in/to:
- Initiate and perform biological investigations in a research context.
- Analyse complex biological problems and draw conclusions and suggest solutions in a work context.